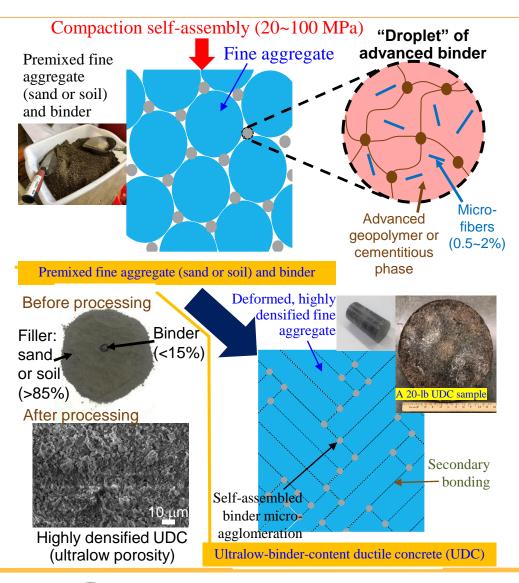


Extremely Durable and Low-Cost Concrete: Ultralow Binder Content and Ultrahigh Tensile Ductility

PI: Yu Qiao, UC San Diego

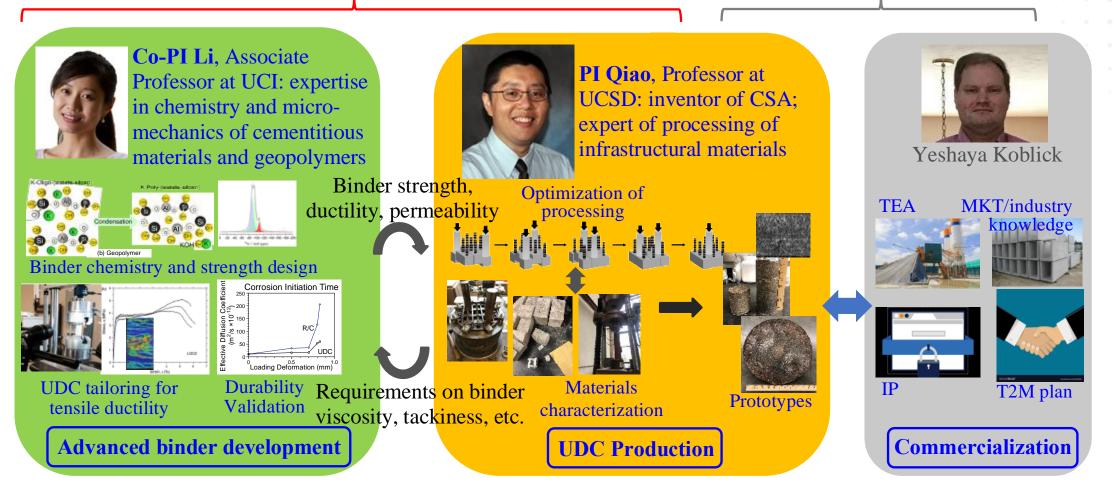

Co-PI: Mo Li, UC Irvine

Project Vision

- Using advanced binder to drastically improve the concrete durability
- Using compaction to simplify mixing and to largely reduce the binder content (much reduced cost, enhanced strength and ductility, reduced carbon emission, etc.)

Total Project Cost:	\$1.3M
Length	30 mo.

The Concept


- 0.5~2% microfibers drastically improve the concrete durability
- Compaction (15~20 MPa) to
 - Simplify the premixing process
 - ➤ Greatly reduces the binder content to only ~15% (reduced cost & carbon emission)
 - Further improve the ductility and strength

The Team

Research & Development

Prototyping & Commercialization

Project Objectives

- ► Q4: Proof of concept: compaction formation (UCSD)
 - Low binder content (10~15%, compared to ~25% in regular concrete)
 - Adequate strength (>5,000 psi)
- ► Q4: Advanced binders (UCI)
 - Ductility at least 10X to 100X
- Q8: Production of 500-lb prototypes (UCSD)
- ▶ Q10: Characterization of microstructure, mechanical properties & durability (UCI)
- ► T2M
 - Market niche: precast parts (1/7 of the total construction materials market)
 - Licensing vs. start up

Results (I)

Use a regular mixer to premix

- ~15% portland cement (compared to ~25% in typical concrete)
- ~0.5% microfibers (compared to ~2% in typical UHPC)
- water, sand, gravels, etc.

The premixed material was compacted in a steel mold, up to 15 MPa (~2200 psi)

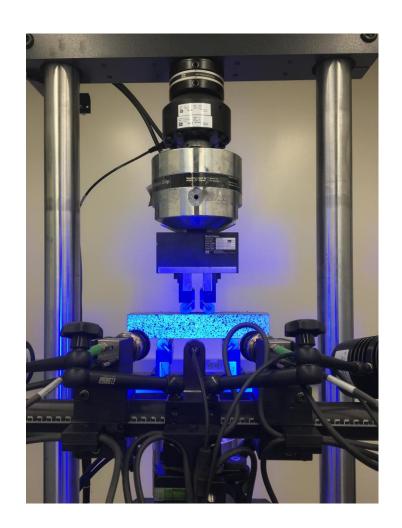
 The compressive force is applied by portable hydraulic jacks, commonly used in construction sites

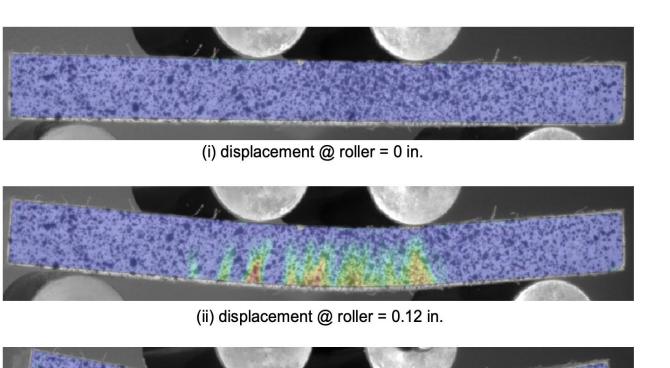
Results (I)

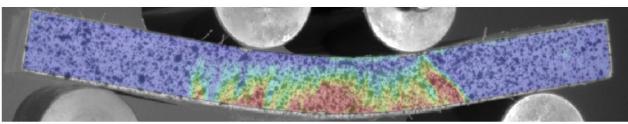
After curing for 28 days, strong UDC samples (2x6') are produced

Results (I)

500-lb UDC Sample 3 (28-day)											
Compressive strength (psi)				Flexural strength (psi)							
Location		Ave.	Stdev.	Goal	Location		Ave.	Stdev.	Goal		
Corner	top	15057.85	532.29	6500.00		Cornor	top	2201.68	124.73		
	bottom	15169.52	337.94		Corner	bottom	2158.17	145.04			
Interior	top	15053.49	770.15		6500.00	6500.00	Interior	top	2130.61	142.14	1200.00
	bottom	14429.83	369.85			iiiteiioi	bottom	2298.85	123.28	1200.00	
Boundary	top	14609.68	337.94			Boundary	top	2324.96	98.63		
	bottom	14605.33	684.58			Bouridary	bottom	2288.70	133.43		


^{* 4} specimens were tested for each type of location;


- Compressive strength: 6915 psi
- Flexural strength: 935 psi
- * Toughness: more than 20x > reference concrete



^{*} Reference concrete (no compaction, ~25% cement binder)

Results (II) - UDC Ductility

(iii) displacement @ roller = 0.23 in.

5.000

4.500

4.000

3.500

3.000

2.500

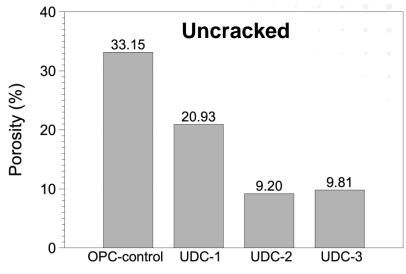
2.000

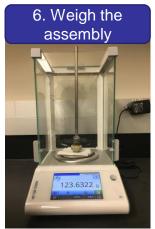
1.500

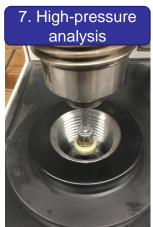
1.000

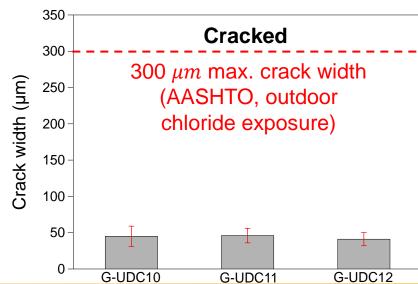
0.500

0.000


Results (II) – UDC Durability







Challenges and Risks

- ► In the past, the high cost limits the use of advanced concrete materials
- ▶ In our R&D, we aim to develop low-cost, high-performance concrete by
 - Greatly reducing the binder content
 - Simplifying the mixing/processing procedure
 The goal is to keep the total cost below \$65/ton
- ► Main risk: scalability (fiber mixing, compaction) → Solved
- Main risk: The best market niche

Potential Partnerships

- We are seeking potential industrial and T2M partners
 - Licensing vs. start up
- ► To other teams: If you have a great binder, we may compact the material to
 - Densify the microstructure and greatly improve the strength/ductility, or
 - Largely reduce the binder content, with the strength unchanged

October 22, 2021 Insert Presentation Name

Summary Slide

- Ultralow-binder-content durable concrete (UDC)
 - Compaction: a very low binder content (10~15%) → simple premixing, low materials cost, green (low carbon emission), less demanding for class F fly ash (if geopolymer binder), highly densified microstructure, high strength, high ductility
 - Chemistry and micromechanics tailoring: ultrahigh ductility and durability
- Our team
 - Yu Qiao, UCSD (inventor of the compaction formation technique)
 - Mo Li, UCI (advanced binders, UDC ductility tailoring)
 - Yeshaya Koblick (T2M)
- Project goal
 - Prove the concept (500-lb samples)
 - Prove the cost efficiency (<\$65/ton, including labor, equipment, waste)

